Login
Search
Search
0 Dates
2024
2023
2022
2021
2020
2019
2018
0 Events
CPC 2018
CPC 2019
Curso de Atualização em Medicina Cardiovascular 2019
Reunião Anual Conjunta dos Grupos de Estudo de Cirurgia Cardíaca, Doenças Valvulares e Ecocardiografia da SPC
CPC 2020
CPC 2021
CPC 2022
CPC 2023
CPC 2024
0 Topics
A. Basics
B. Imaging
C. Arrhythmias and Device Therapy
D. Heart Failure
E. Coronary Artery Disease, Acute Coronary Syndromes, Acute Cardiac Care
F. Valvular, Myocardial, Pericardial, Pulmonary, Congenital Heart Disease
G. Aortic Disease, Peripheral Vascular Disease, Stroke
H. Interventional Cardiology and Cardiovascular Surgery
I. Hypertension
J. Preventive Cardiology
K. Cardiovascular Disease In Special Populations
L. Cardiovascular Pharmacology
M. Cardiovascular Nursing
N. E-Cardiology / Digital Health, Public Health, Health Economics, Research Methodology
O. Basic Science
P. Other
0 Themes
01. History of Cardiology
02. Clinical Skills
03. Imaging
04. Arrhythmias, General
05. Atrial Fibrillation
06. Supraventricular Tachycardia (non-AF)
07. Syncope and Bradycardia
08. Ventricular Arrhythmias and Sudden Cardiac Death (SCD)
09. Device Therapy
10. Chronic Heart Failure
11. Acute Heart Failure
12. Coronary Artery Disease (Chronic)
13. Acute Coronary Syndromes
14. Acute Cardiac Care
15. Valvular Heart Disease
16. Infective Endocarditis
17. Myocardial Disease
18. Pericardial Disease
19. Tumors of the Heart
20. Congenital Heart Disease and Pediatric Cardiology
21. Pulmonary Circulation, Pulmonary Embolism, Right Heart Failure
22. Aortic Disease
23. Peripheral Vascular and Cerebrovascular Disease
24. Stroke
25. Interventional Cardiology
26. Cardiovascular Surgery
27. Hypertension
28. Risk Factors and Prevention
29. Rehabilitation and Sports Cardiology
30. Cardiovascular Disease in Special Populations
31. Pharmacology and Pharmacotherapy
32. Cardiovascular Nursing
33. e-Cardiology / Digital Health
34. Public Health and Health Economics
35. Research Methodology
36. Basic Science
37. Miscellanea
0 Resources
Abstract
Slides
Vídeo
Report
CLEAR FILTERS
The peri-infarct “gray zone” of myocardial fibrosis is a better predictor of ventricular arrhythmias than dense core fibrosis in patients with previous myocardial infarction
Session:
Posters (Sessão 2 - Écran 2) - Arritmias 2 - Arritmias Ventriculares 1
Speaker:
Pedro M. Lopes
Congress:
CPC 2022
Topic:
C. Arrhythmias and Device Therapy
Theme:
08. Ventricular Arrhythmias and Sudden Cardiac Death (SCD)
Subtheme:
08.3 Ventricular Arrhythmias and SCD - Diagnostic Methods
Session Type:
Pósters Electrónicos
FP Number:
---
Authors:
Pedro m. Lopes; Gonçalo Cunha; Pedro Freitas; Bruno Rocha; João Abecasis; João Carmo; Sara Guerreiro; Pedro Galvão Santos; Francisco m. Costa; Pedro Carmo; Diogo Cavaco; Francisco Morgado; Miguel Mendes; Pedro Adragão; António m. Ferreira
Abstract
<p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><strong><span style="color:black">Background: </span></strong><span style="color:black">Current sudden cardiac death (SCD) risk stratification relies heavily on left ventricular ejection fraction (LVEF), but markers to refine risk assessment are needed. Dense core fibrosis (DCF) and peri-infarct “gray zone” of myocardial fibrosis (GZF) on late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) have been proposed as potential </span><span style="background-color:white"><span style="color:black">arrhythmogenic substrates</span></span><span style="color:black">. The aim of </span><span style="color:black">our study </span><span style="background-color:white"><span style="color:black">was to determine whether DCF and GZF could predict the occurrence of ventricular arrhythmias in patients with previous myocardial infarction.</span></span></span></span></p> <p style="text-align:justify"> </p> <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><strong><span style="color:black">Methods: </span></strong><span style="color:black">We performed a single centre retrospective study enrolling consecutive patients with previous myocardial infarction undergoing CMR before implantable cardioverter-defibrillator (ICD) implantation. Areas of LGE were subdivided into “core” DCF and “peri-infarct” GZF zones based on signal intensity (>5 SD, and 2-5 SD above the mean of reference myocardium, respectively).</span></span></span></p> <p style="text-align:justify"> </p> <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="color:black">The primary endpoint was a composite of sudden arrhythmic death, appropriate ICD shock, ventricular fibrillation (VF), or sustained ventricular tachycardia (VT) as detected by the device. </span></span></span></p> <p style="text-align:justify"> </p> <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><strong><span style="color:black">Results:</span></strong> <span style="color:black">A total of 88 patients (median age 61 years [IQR 54-73], 84% male, median LVEF 30% [IQR 23-36%], 14% secondary prevention) were included. During a median follow-up of 23 months [IQR 9-38], 13 patients reached the primary endpoint (10 appropriate ICD shock, 2 sustained VT or VF, and 1 sudden arrhythmic death). </span><span style="background-color:white"><span style="color:black">Patients who attained the primary endpoint had similar DCF (30.4g ± 14.7 vs. 28.0g ± 15.3; <em>P</em> = 0.601) but a greater amount of GZF (18.1g ± 9.6 vs. 11.9g ± 6.7; <em>P</em> = 0.005). On univariate analysis, GZF was associated with the composite endpoint (HR: </span></span><span style="color:black">1.09 per gram; 95%CI: 1.02-1.15; <em>P </em>= 0.006),</span> <span style="background-color:white"><span style="color:black">whereas DCF was not (HR: </span></span><span style="color:black">1.01 per gram; 95%CI: 0.98-1.05; <em>P </em>= 0.571). </span><span style="background-color:white"><span style="color:black">After adjustment for LVEF, GZF remained independently associated with the primary endpoint (adjusted HR: </span></span><span style="color:black">1.06 per gram; 95% CI: 1.01-1.12; <em>P </em>= 0.035). Decision tree analysis identified 11.9g of GZF as the best cut-off to predict </span><span style="background-color:white"><span style="color:black">life-threatening arrhythmic events</span></span><span style="color:black">. The primary endpoint occurred in 11 out of the 35 patients (31.4%) with GZF </span><span style="font-family:Symbol"><span style="color:black">³</span></span><span style="color:black">11.9g, but in only 2 of the 53 patients (3.8%) with GZF <11.9g – Figure.</span></span></span></p> <p style="text-align:justify"> </p> <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><strong><span style="color:black">Conclusions: </span></strong><span style="color:black">The e</span><span style="color:black">xtent of peri-infarct GZF seems to be a better predictor of ventricular arrhythmias than DCF. This parameter may be useful to </span><span style="background-color:white"><span style="color:black">identify a subgroup of patients with previous myocardial infarction at increased risk of life-threatening arrhythmic events.</span></span></span></span></p>
Slides
Our mission: To reduce the burden of cardiovascular disease
Visit our site