Login
Search
Search
0 Dates
2024
2023
2022
2021
2020
2019
2018
0 Events
CPC 2018
CPC 2019
Curso de Atualização em Medicina Cardiovascular 2019
Reunião Anual Conjunta dos Grupos de Estudo de Cirurgia Cardíaca, Doenças Valvulares e Ecocardiografia da SPC
CPC 2020
CPC 2021
CPC 2022
CPC 2023
CPC 2024
0 Topics
A. Basics
B. Imaging
C. Arrhythmias and Device Therapy
D. Heart Failure
E. Coronary Artery Disease, Acute Coronary Syndromes, Acute Cardiac Care
F. Valvular, Myocardial, Pericardial, Pulmonary, Congenital Heart Disease
G. Aortic Disease, Peripheral Vascular Disease, Stroke
H. Interventional Cardiology and Cardiovascular Surgery
I. Hypertension
J. Preventive Cardiology
K. Cardiovascular Disease In Special Populations
L. Cardiovascular Pharmacology
M. Cardiovascular Nursing
N. E-Cardiology / Digital Health, Public Health, Health Economics, Research Methodology
O. Basic Science
P. Other
0 Themes
01. History of Cardiology
02. Clinical Skills
03. Imaging
04. Arrhythmias, General
05. Atrial Fibrillation
06. Supraventricular Tachycardia (non-AF)
07. Syncope and Bradycardia
08. Ventricular Arrhythmias and Sudden Cardiac Death (SCD)
09. Device Therapy
10. Chronic Heart Failure
11. Acute Heart Failure
12. Coronary Artery Disease (Chronic)
13. Acute Coronary Syndromes
14. Acute Cardiac Care
15. Valvular Heart Disease
16. Infective Endocarditis
17. Myocardial Disease
18. Pericardial Disease
19. Tumors of the Heart
20. Congenital Heart Disease and Pediatric Cardiology
21. Pulmonary Circulation, Pulmonary Embolism, Right Heart Failure
22. Aortic Disease
23. Peripheral Vascular and Cerebrovascular Disease
24. Stroke
25. Interventional Cardiology
26. Cardiovascular Surgery
27. Hypertension
28. Risk Factors and Prevention
29. Rehabilitation and Sports Cardiology
30. Cardiovascular Disease in Special Populations
31. Pharmacology and Pharmacotherapy
32. Cardiovascular Nursing
33. e-Cardiology / Digital Health
34. Public Health and Health Economics
35. Research Methodology
36. Basic Science
37. Miscellanea
0 Resources
Abstract
Slides
Vídeo
Report
CLEAR FILTERS
CT-Radiomic features of Epicardial Adipose Tissue in AF recurrence after catheter ablation
Session:
Sessão de Posters 46 - TC Cardíaca
Speaker:
Inês Amorim Cruz
Congress:
CPC 2024
Topic:
B. Imaging
Theme:
03. Imaging
Subtheme:
03.6 Cross-Modality and Multi-Modality Imaging Topics
Session Type:
Cartazes
FP Number:
---
Authors:
Inês Amorim Cruz; Sílvia O. Diaz; Fábio Sousa-Nunes; João Pedrosa; Inês Neves; Rafael Teixeira; Francisca Saraiva; João Almeida; João Primo; Francisco Sampaio; António S. Barros; Ricardo Fontes-Carvalho
Abstract
<p style="text-align:justify"><span style="font-size:medium"><span style="font-family:"Times New Roman",serif"><span style="color:#000000"><strong><span style="font-size:10.5pt">Background:</span></strong><span style="font-size:10.5pt"> Obesity is </span><span style="font-size:10.5pt">an </span><span style="font-size:10.5pt">important risk </span><span style="font-size:10.5pt">factor</span><span style="font-size:10.5pt"> for atrial fibrillation (AF).</span> <span style="font-size:10.5pt">Advances </span><span style="font-size:10.5pt">in</span><span style="font-size:10.5pt"> imaging techniques </span><span style="font-size:10.5pt">have enabled the exploration of </span><span style="font-size:10.5pt">regional body fat distribution.</span> <span style="font-size:10.5pt">Epicardial adipose tissue (EAT) is a metabolically active tissue unique </span><span style="font-size:10.5pt">for</span><span style="font-size:10.5pt"> its unobstructed proximity to the heart, which </span><span style="font-size:10.5pt">might</span><span style="font-size:10.5pt"> influence the risk of AF or its recurrence.</span> <span style="font-size:10.5pt">Radiomics is an emerging image analysis</span><span style="font-size:10.5pt"> technique that leverages noninvasive</span><span style="font-size:10.5pt"> tissue analysis and </span><span style="font-size:10.5pt">is </span><span style="font-size:10.5pt">potentially useful for </span><span style="font-size:10.5pt">AF </span><span style="font-size:10.5pt">risk stratification.</span> <span style="font-size:10.5pt">We aimed to explore </span><span style="font-size:10.5pt">the </span><span style="font-size:10.5pt">radiomic features of EAT, which could improve </span><span style="font-size:10.5pt">the </span><span style="font-size:10.5pt">risk stratification of AF recurrence after catheter ablation.</span></span></span></span></p> <p style="text-align:justify"><span style="font-size:medium"><span style="font-family:"Times New Roman",serif"><span style="color:#000000"><strong><span style="font-size:10.5pt">Methods:</span></strong><span style="font-size:10.5pt"> We included all consecutive patients </span><span style="font-size:10.5pt">who underwent</span><span style="font-size:10.5pt"> AF ablation (2017-2021) who performed a CT scan prior to the procedure.</span><span style="font-size:10.5pt">The EAT was segmented using a U-Net framework, which is a convolutional neural network (CNN) designed for image segmentation, with </span><span style="font-size:10.5pt">noncontrast acquisition automatically </span><span style="font-size:10.5pt">applied.</span> <span style="font-size:10.5pt">The process of extracting radiomic features</span><span style="font-size:10.5pt"> was </span><span style="font-size:10.5pt">carried out</span><span style="font-size:10.5pt"> using the Pyradiomics </span><span style="font-size:10.5pt">software, resulting </span><span style="font-size:10.5pt">in </span><span style="font-size:10.5pt">a </span><span style="font-size:10.5pt">total </span><span style="font-size:10.5pt">of </span><span style="font-size:10.5pt">851 features</span><span style="font-size:10.5pt">. The three primary categories into which they</span><span style="font-size:10.5pt"> can be </span><span style="font-size:10.5pt">classified are</span><span style="font-size:10.5pt">: (i) shape </span><span style="font-size:10.5pt">attributes, </span><span style="font-size:10.5pt">(ii) first</span><span style="font-size:10.5pt">-</span><span style="font-size:10.5pt">order (intensity) </span><span style="font-size:10.5pt">features, </span><span style="font-size:10.5pt">and (iii) texture </span><span style="font-size:10.5pt">characteristics. </span><span style="font-size:10.5pt">We </span><span style="font-size:10.5pt">conducted</span><span style="font-size:10.5pt"> an exploratory analysis</span><span style="font-size:10.5pt"> by employing</span><span style="font-size:10.5pt"> a univariate Cox regression model, </span><span style="font-size:10.5pt">adjusting for</span><span style="font-size:10.5pt"> age, </span><span style="font-size:10.5pt">sex</span><span style="font-size:10.5pt">, BMI</span><span style="font-size:10.5pt">,</span><span style="font-size:10.5pt"> and type of AF</span><span style="font-size:10.5pt">,</span><span style="font-size:10.5pt"> and using non-transformed radiomic features.</span></span></span></span></p> <p style="text-align:justify"><span style="font-size:medium"><span style="font-family:"Times New Roman",serif"><span style="color:#000000"><strong><span style="font-size:10.5pt">Results:</span></strong><span style="font-size:10.5pt"> A total of 533 patients </span><span style="font-size:10.5pt">were included in the study, of whom </span><span style="font-size:10.5pt">36% </span><span style="font-size:10.5pt">were </span><span style="font-size:10.5pt">women, </span><span style="font-size:10.5pt">with a </span><span style="font-size:10.5pt">median age </span><span style="font-size:10.5pt">of </span><span style="font-size:10.5pt">58 years </span><span style="font-size:10.5pt">(interquartile range of </span><span style="font-size:10.5pt">49</span><span style="font-size:10.5pt">-</span><span style="font-size:10.5pt">65</span><span style="font-size:10.5pt">),</span><span style="font-size:10.5pt"> and 20% had persistent AF</span><span style="font-size:10.5pt">.</span><span style="font-size:10.5pt"> During a median follow-up of 26 months [IQR 19-36], 130 patients (24%) developed AF recurrence. Univariate Cox regression showed that only measures of texture heterogeneity of EAT were higher in patients with </span><span style="font-size:10.5pt">a </span><span style="font-size:10.5pt">higher risk of recurrence</span><span style="font-size:10.5pt">,</span><span style="font-size:10.5pt"> including contrast-related features (GLSZM – Gray-Level Non-Uniformity, HR 1.23 [95% CI, 1.01-1.51] p = 0.043) and non-uniform </span><span style="font-size:10.5pt">gray</span><span style="font-size:10.5pt">-level matrices (Size-Zone, Run-Length</span><span style="font-size:10.5pt">,</span><span style="font-size:10.5pt"> and Dependence Non-Uniformity). Features related to </span><span style="font-size:10.5pt">the </span><span style="font-size:10.5pt">shape and EAT attenuation distribution (global signal intensity) were similar between </span><span style="font-size:10.5pt">the </span><span style="font-size:10.5pt">groups.</span></span></span></span></p> <p style="text-align:justify"><span style="font-size:medium"><span style="font-family:"Times New Roman",serif"><span style="color:#000000"><strong><span style="font-size:10.5pt">Conclusion:</span></strong><span style="font-size:10.5pt"> In this </span><span style="font-size:10.5pt">group</span><span style="font-size:10.5pt"> of patients with </span><span style="font-size:10.5pt">atrial fibrillation (</span><span style="font-size:10.5pt">AF</span><span style="font-size:10.5pt">), the</span><span style="font-size:10.5pt"> qualitative </span><span style="font-size:10.5pt">characteristics (</span><span style="font-size:10.5pt">heterogeneity</span><span style="font-size:10.5pt"> of tissue</span><span style="font-size:10.5pt">) of epicardial adipose tissue, </span><span style="font-size:10.5pt">as opposed to </span><span style="font-size:10.5pt">quantitative features </span><span style="font-size:10.5pt">like</span><span style="font-size:10.5pt"> volume, were </span><span style="font-size:10.5pt">found to be linked to a faster </span><span style="font-size:10.5pt">recurrence </span><span style="font-size:10.5pt">of AF following</span><span style="font-size:10.5pt"> catheter ablation.</span></span></span></span></p>
Slides
Our mission: To reduce the burden of cardiovascular disease
Visit our site