Login
Search
Search
0 Dates
2024
2023
2022
2021
2020
2019
2018
0 Events
CPC 2018
CPC 2019
Curso de Atualização em Medicina Cardiovascular 2019
Reunião Anual Conjunta dos Grupos de Estudo de Cirurgia Cardíaca, Doenças Valvulares e Ecocardiografia da SPC
CPC 2020
CPC 2021
CPC 2022
CPC 2023
CPC 2024
0 Topics
A. Basics
B. Imaging
C. Arrhythmias and Device Therapy
D. Heart Failure
E. Coronary Artery Disease, Acute Coronary Syndromes, Acute Cardiac Care
F. Valvular, Myocardial, Pericardial, Pulmonary, Congenital Heart Disease
G. Aortic Disease, Peripheral Vascular Disease, Stroke
H. Interventional Cardiology and Cardiovascular Surgery
I. Hypertension
J. Preventive Cardiology
K. Cardiovascular Disease In Special Populations
L. Cardiovascular Pharmacology
M. Cardiovascular Nursing
N. E-Cardiology / Digital Health, Public Health, Health Economics, Research Methodology
O. Basic Science
P. Other
0 Themes
01. History of Cardiology
02. Clinical Skills
03. Imaging
04. Arrhythmias, General
05. Atrial Fibrillation
06. Supraventricular Tachycardia (non-AF)
07. Syncope and Bradycardia
08. Ventricular Arrhythmias and Sudden Cardiac Death (SCD)
09. Device Therapy
10. Chronic Heart Failure
11. Acute Heart Failure
12. Coronary Artery Disease (Chronic)
13. Acute Coronary Syndromes
14. Acute Cardiac Care
15. Valvular Heart Disease
16. Infective Endocarditis
17. Myocardial Disease
18. Pericardial Disease
19. Tumors of the Heart
20. Congenital Heart Disease and Pediatric Cardiology
21. Pulmonary Circulation, Pulmonary Embolism, Right Heart Failure
22. Aortic Disease
23. Peripheral Vascular and Cerebrovascular Disease
24. Stroke
25. Interventional Cardiology
26. Cardiovascular Surgery
27. Hypertension
28. Risk Factors and Prevention
29. Rehabilitation and Sports Cardiology
30. Cardiovascular Disease in Special Populations
31. Pharmacology and Pharmacotherapy
32. Cardiovascular Nursing
33. e-Cardiology / Digital Health
34. Public Health and Health Economics
35. Research Methodology
36. Basic Science
37. Miscellanea
0 Resources
Abstract
Slides
Vídeo
Report
CLEAR FILTERS
Endarterectomy in CTEPH – Hemodynamic improvement and RV/PA coupling
Session:
Comunicações Orais - Sessão 12 - Hipertensão Pulmonar
Speaker:
Miguel Azaredo Raposo
Congress:
CPC 2024
Topic:
F. Valvular, Myocardial, Pericardial, Pulmonary, Congenital Heart Disease
Theme:
21. Pulmonary Circulation, Pulmonary Embolism, Right Heart Failure
Subtheme:
21.4 Pulmonary Circulation, Pulmonary Embolism, Right Heart Failure - Treatment
Session Type:
Comunicações Orais
FP Number:
---
Authors:
Miguel Azaredo Raposo; Cláudia Jorge; Daniel Cazeiro; Ana Margarida Martins; Catarina Simões de Oliveira; Ana Beatriz Garcia; Ana Abrantes; Tatiana Guimarães; Susana Robalo Martins; Nuno Lousada; Fausto J. Pinto; Rui Plácido
Abstract
<p style="text-align:start"> </p> <p style="text-align:start"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><strong>Introduction</strong></span></span></span></p> <p style="text-align:justify"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">Pulmonary thromboendarterectomy (PEA) remains the gold standard in treating chronic thromboembolic pulmonary hypertension (CTEPH). Reducing the thrombotic burden and mechanical obstruction of the pulmonary arteries (PA) leads to significant hemodynamic improvement, allowing for favorable right ventricular (RV) remodeling. </span></span></span></span></p> <p style="text-align:justify"> </p> <p style="text-align:justify"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><strong><span style="color:black">Aim</span></strong></span></span></span></p> <p style="text-align:justify"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black"> To characterize hemodynamic improvement post PEA and predictors of normalization of RV-PA coupling</span></span></span></span></p> <p style="text-align:justify"> </p> <p style="text-align:justify"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><strong><span style="color:black">Methods</span></strong></span></span></span></p> <p style="text-align:justify"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">Single center retrospective study, including 30 pts submitted to PEA over a 7-year period. Hemodynamic assessment was performed by right heart catheterization (RHC) before PEA, immediately after and at 6-month follow-up (FUP). Echocardiographic assessment of RV function was acquired at baseline and 6-month FUP. Mean absolute differences were calculated before and after PEA. Differences between groups were assessed with ANOVA analysis and ROC curve analysis allowed us to define a cut-off point in mPAP reduction to predict favorable RV remodeling. </span></span></span></span></p> <p style="text-align:justify"> </p> <p style="text-align:justify"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><strong><span style="color:black">Results</span></strong></span></span></span></p> <p style="text-align:justify"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">We included 30 pts with a mean age of 57,9</span><span style="font-family:Symbol"><span style="color:black">±</span></span><span style="color:black">13 years of age and slight predominance of female sex (57%). Regarding risk assessment with the COMPERA 4 strata tool at baseline, 23% of pts were high risk, 20% intermediate high, 27% intermediate low and 6% at low risk.</span></span></span></span></p> <p style="text-align:justify"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">Pulmonary hemodynamics improved immediately after PEA, as indicated by a mean reduction of 28,3 </span><span style="font-family:Symbol"><span style="color:black">±</span></span><span style="color:black">17 mmHg in mPAP; 44,4</span><span style="font-family:Symbol"><span style="color:black">±</span></span><span style="color:black">27,6 mmHg in sPAP; 8</span><span style="font-family:Symbol"><span style="color:black">±</span></span><span style="color:black">3,4 Wu in PVR and an increase in CO of 0,5</span><span style="font-family:Symbol"><span style="color:black">±</span></span><span style="color:black">1 l/min. This improvement was sustained at 6-month post-PEA assessment, with a mean reduction of 31,5 </span><span style="font-family:Symbol"><span style="color:black">±</span></span><span style="color:black">26,7 mmHg in mPAP; 48,3</span><span style="font-family:Symbol"><span style="color:black">±</span></span><span style="color:black">41,2 mmHg in sPAP; 6,3</span><span style="font-family:Symbol"><span style="color:black">±</span></span><span style="color:black">6,2 Wu in PVR and a 0,5</span><span style="font-family:Symbol"><span style="color:black">±</span></span><span style="color:black">1 L/min increase in CO</span><span style="color:black">. </span></span></span></span></p> <p style="text-align:justify"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">Regarding RV remodeling at 6-month post-PEA, an increase of 0.15</span><span style="font-family:Symbol"><span style="color:black">±</span></span><span style="color:black">0.2mm/mmHg in TAPSE/PSAP ratio and 3</span><span style="font-family:Symbol"><span style="color:black">±</span></span><span style="color:black">2,8cm/s in Tricuspid S’ were recorded. RV/PA uncoupling, defined as TAPSE/PSAP <0,31 mm/mmHg, was evident in 73% of pts at baseline, 25% of which recovered at 6m follow-up. There were no significant differences between groups, according to the 4 strata risk assessment at baseline, regarding pulmonary hemodynamics and RV remodeling.</span></span></span></span></p> <p style="text-align:justify"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">Through ROC curve analysis, we were able to define a cut-off point of 37 mmHg in immediate mPAP post-PEA reduction to predict RV-RA coupling normalization at 6-m FUP (sensitivity 70%, specificity 89%). </span></span></span></span></p> <p style="text-align:justify"> </p> <p style="text-align:justify"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><strong><span style="color:black">Conclusions</span></strong></span></span></span></p> <p style="text-align:justify"><span style="font-size:medium"><span style="font-family:Calibri,sans-serif"><span style="color:#000000"><span style="color:black">PEA is an effective treatment for CTEPH and leads to immediate and sustained improvements in pulmonary hemodynamics. This improvement can be expected regardless of the risk assessment at baseline. Reduction in RV afterload allows for favorable RV remodeling, and an immediate post-PEA mPAP reduction > 37 mmHg may predict the normalization of RV-PA coupling.</span></span></span></span></p> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div> </div> <div id="accel-snackbar" style="left:50%; top:50px; transform:translate(-50%, 0px)"> </div>
Slides
Our mission: To reduce the burden of cardiovascular disease
Visit our site