Login
Search
Search
0 Dates
2024
2023
2022
2021
2020
2019
2018
0 Events
CPC 2018
CPC 2019
Curso de Atualização em Medicina Cardiovascular 2019
Reunião Anual Conjunta dos Grupos de Estudo de Cirurgia Cardíaca, Doenças Valvulares e Ecocardiografia da SPC
CPC 2020
CPC 2021
CPC 2022
CPC 2023
CPC 2024
0 Topics
A. Basics
B. Imaging
C. Arrhythmias and Device Therapy
D. Heart Failure
E. Coronary Artery Disease, Acute Coronary Syndromes, Acute Cardiac Care
F. Valvular, Myocardial, Pericardial, Pulmonary, Congenital Heart Disease
G. Aortic Disease, Peripheral Vascular Disease, Stroke
H. Interventional Cardiology and Cardiovascular Surgery
I. Hypertension
J. Preventive Cardiology
K. Cardiovascular Disease In Special Populations
L. Cardiovascular Pharmacology
M. Cardiovascular Nursing
N. E-Cardiology / Digital Health, Public Health, Health Economics, Research Methodology
O. Basic Science
P. Other
0 Themes
01. History of Cardiology
02. Clinical Skills
03. Imaging
04. Arrhythmias, General
05. Atrial Fibrillation
06. Supraventricular Tachycardia (non-AF)
07. Syncope and Bradycardia
08. Ventricular Arrhythmias and Sudden Cardiac Death (SCD)
09. Device Therapy
10. Chronic Heart Failure
11. Acute Heart Failure
12. Coronary Artery Disease (Chronic)
13. Acute Coronary Syndromes
14. Acute Cardiac Care
15. Valvular Heart Disease
16. Infective Endocarditis
17. Myocardial Disease
18. Pericardial Disease
19. Tumors of the Heart
20. Congenital Heart Disease and Pediatric Cardiology
21. Pulmonary Circulation, Pulmonary Embolism, Right Heart Failure
22. Aortic Disease
23. Peripheral Vascular and Cerebrovascular Disease
24. Stroke
25. Interventional Cardiology
26. Cardiovascular Surgery
27. Hypertension
28. Risk Factors and Prevention
29. Rehabilitation and Sports Cardiology
30. Cardiovascular Disease in Special Populations
31. Pharmacology and Pharmacotherapy
32. Cardiovascular Nursing
33. e-Cardiology / Digital Health
34. Public Health and Health Economics
35. Research Methodology
36. Basic Science
37. Miscellanea
0 Resources
Abstract
Slides
Vídeo
Report
CLEAR FILTERS
Computed Tomography-derived myocardial extracellular volume in patients with severe aortic stenosis: correlation with markers of ventricular dysfunction
Session:
Comunicações Orais - Sessão 24 - Tomografia Computorizada Cardíaca
Speaker:
Pedro M. Lopes
Congress:
CPC 2023
Topic:
B. Imaging
Theme:
03. Imaging
Subtheme:
03.2 Computed Tomography
Session Type:
Comunicações Orais
FP Number:
---
Authors:
Pedro M. Lopes; Rita Reis Santos; Francisco Albuquerque; Pedro Freitas; Cláudia Silva; Sara Guerreiro; João Abecasis; Ana Coutinho Santos; Carla Saraiva; Miguel Mendes; António M. Ferreira
Abstract
<p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><strong>Background: </strong>Myocardial fibrosis is a potential adverse prognostic marker in patients with severe aortic stenosis (AS) and can be quantified using non-invasive imaging measures, such as the extracellular volume fraction (ECV). Although computed tomography (CT) for transcatheter aortic valve replacement (TAVR) planning was originally developed to assess the aortic valve complex and access routes, it has evolved to include the measurement of ECV for myocardial tissue characterization. </span></span></p> <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"> </span></span></p> <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><strong>Aim:</strong> This study aimed to determine associations between CT-derived ECV (ECV<sub><span style="color:#222222">C</span>T</sub>) and clinical and echocardiographic markers of ventricular function in patients with severe AS referred for TAVR-planning CT.</span></span></p> <p style="text-align:justify"> </p> <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><strong>Methods: </strong>Single-center prospective study enrolling all consecutive patients with severe symptomatic AS referred for TAVR-planning CT between April and November 2022. CT was performed on a 192-slice dual-source 3<sup>rd</sup> generation scanner (Siemens Somatom Force) and ECV<sub><span style="color:#222222">C</span>T</sub> was acquired during TAVR-planning using an additional 5-minute post-contrast low-radiation-dose prospective acquisition. ECV<sub><span style="color:#222222">C</span>T</sub> was calculated as the ratio of change in CT attenuation (Hounsfield units [HU]) of the septal myocardium and the left ventricle (LV) blood pool before and after contrast administration, according to the equation: ECV<sub>CT</sub> = (1 – hematocrit) x (<span style="font-family:Symbol">D</span>HU<sub>myo</sub>/<span style="font-family:Symbol">D</span>HU<sub>blood</sub>) – <strong><span style="color:#0070c0">Figure 1A</span></strong>. </span></span></p> <p style="text-align:justify"> </p> <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><strong><span style="color:black">Results:</span></strong><span style="color:black"> A total of 102 patients were included (</span><span style="color:#222222">mean </span><span style="color:black">age 81 ± 7 years; 46% male</span><span style="color:#222222">; mean valvular transaortic </span><span style="color:black">gradient 51 ± 14 mmHg</span><span style="color:#222222">; mean aortic valve </span><span style="color:black">area 0.7 ± 0.2 cm<sup>2</sup></span><span style="color:#222222">; mean LV ejection fraction (EF) by 2D echocardiogram </span><span style="color:black">57 ± 11%). No patient had a clinical diagnosis of cardiac amyloidosis. </span><span style="color:#222222">Overall, the mean ECV<sub>C</sub></span><sub>T </sub>value was 33.<span style="color:black">4 ± 7.0%. Myocardial ECV</span><sub><span style="color:#222222">C</span>T</sub><span style="color:black"> values significantly differed between </span><span style="color:#222222">AS subtypes, with higher values in patients with low-gradient AS (n=13, 13%; ECV<sub>C</sub></span><sub>T</sub><span style="color:black"> 40.3 ± 4.8% vs </span><span style="color:#222222">32.4 </span><span style="color:black">± 6.7%, p<0.001</span><span style="color:#222222">) - </span><strong><span style="color:#0070c0">Figure 1B</span></strong><span style="color:#222222">. Additionally, myocardial </span><span style="color:black">ECV</span><sub><span style="color:#222222">C</span>T</sub><span style="color:black"> values correlated with markers of LV and right ventricular (RV) dysfunction, including lower LV EF (r = -0.354, p<0.001), worse LV global longitudinal strain (r = 0.420, p=0.002), reduced TAPSE (r = -0.230, p=0.043) and RV S wave by tissue doppler imaging (r = -0.321, p=0.010) and higher NT-proBNP values (r = 0.347, p=0.002).</span></span></span></p> <p style="text-align:justify"> </p> <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><strong><span style="color:black">Conclusions: </span></strong><span style="color:black">In patients with severe AS scheduled for TAVR-planning CT, ECV</span><sub>CT </sub>values<sub> </sub>are significantly higher in those with low-gradient AS and correlated with several measures of biventricular dysfunction. This CT parameter may be useful to identify a subgroup of patients with higher risk of adverse prognosis.</span></span></p>
Slides
Our mission: To reduce the burden of cardiovascular disease
Visit our site