Login
Search
Search
0 Dates
2024
2023
2022
2021
2020
2019
2018
0 Events
CPC 2018
CPC 2019
Curso de Atualização em Medicina Cardiovascular 2019
Reunião Anual Conjunta dos Grupos de Estudo de Cirurgia Cardíaca, Doenças Valvulares e Ecocardiografia da SPC
CPC 2020
CPC 2021
CPC 2022
CPC 2023
CPC 2024
0 Topics
A. Basics
B. Imaging
C. Arrhythmias and Device Therapy
D. Heart Failure
E. Coronary Artery Disease, Acute Coronary Syndromes, Acute Cardiac Care
F. Valvular, Myocardial, Pericardial, Pulmonary, Congenital Heart Disease
G. Aortic Disease, Peripheral Vascular Disease, Stroke
H. Interventional Cardiology and Cardiovascular Surgery
I. Hypertension
J. Preventive Cardiology
K. Cardiovascular Disease In Special Populations
L. Cardiovascular Pharmacology
M. Cardiovascular Nursing
N. E-Cardiology / Digital Health, Public Health, Health Economics, Research Methodology
O. Basic Science
P. Other
0 Themes
01. History of Cardiology
02. Clinical Skills
03. Imaging
04. Arrhythmias, General
05. Atrial Fibrillation
06. Supraventricular Tachycardia (non-AF)
07. Syncope and Bradycardia
08. Ventricular Arrhythmias and Sudden Cardiac Death (SCD)
09. Device Therapy
10. Chronic Heart Failure
11. Acute Heart Failure
12. Coronary Artery Disease (Chronic)
13. Acute Coronary Syndromes
14. Acute Cardiac Care
15. Valvular Heart Disease
16. Infective Endocarditis
17. Myocardial Disease
18. Pericardial Disease
19. Tumors of the Heart
20. Congenital Heart Disease and Pediatric Cardiology
21. Pulmonary Circulation, Pulmonary Embolism, Right Heart Failure
22. Aortic Disease
23. Peripheral Vascular and Cerebrovascular Disease
24. Stroke
25. Interventional Cardiology
26. Cardiovascular Surgery
27. Hypertension
28. Risk Factors and Prevention
29. Rehabilitation and Sports Cardiology
30. Cardiovascular Disease in Special Populations
31. Pharmacology and Pharmacotherapy
32. Cardiovascular Nursing
33. e-Cardiology / Digital Health
34. Public Health and Health Economics
35. Research Methodology
36. Basic Science
37. Miscellanea
0 Resources
Abstract
Slides
Vídeo
Report
CLEAR FILTERS
Relative apical longitudinal strain – a powerful tool to predict long-term outcomes in transthyretin amyloid cardiomyopathy patients
Session:
Posters (Sessão 4 - Écran 2) - Doenças do Miocárdio e Pericárdio 1
Speaker:
Tamara Pereira
Congress:
CPC 2022
Topic:
F. Valvular, Myocardial, Pericardial, Pulmonary, Congenital Heart Disease
Theme:
17. Myocardial Disease
Subtheme:
17.2 Myocardial Disease – Epidemiology, Prognosis, Outcome
Session Type:
Pósters Electrónicos
FP Number:
---
Authors:
Tamara Pereira; Geraldo Dias; Ana Filipa Cardoso; Mariana Tinoco; Olga Azevedo; Francisco Ferreira; António Lourenço
Abstract
<p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><strong><span style="font-family:"Calibri Light",sans-serif"><span style="color:#333333">Background</span></span></strong><span style="font-family:"Calibri Light",sans-serif"><span style="color:#333333">: </span></span><span style="font-family:"Calibri Light",sans-serif">Cardiac amyloidosis (CA) is frequently misdiagnosed as sarcomeric hypertrophic cardiomyopathy or other causes of left ventricular (LV) hypertrophy. <span style="background-color:white"><span style="color:#212121">The apical sparing pattern of LV global longitudinal strain (GLS) is frequently associated with CA and increased </span></span>relative apical longitudinal strain (RALS) has been associated with worse outcomes in CA. We aimed to assess the prognostic role of RALS on long-term outcomes in wild-type </span><span style="font-family:"Calibri Light",sans-serif">transthyretin</span> <span style="font-family:"Calibri Light",sans-serif">amyloid cardiomyopathy</span><span style="font-family:"Calibri Light",sans-serif"> (ATTR-CM) patients. </span></span></span></p> <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><strong><span style="font-family:"Calibri Light",sans-serif"><span style="color:#333333">Methods:</span></span></strong> <span style="background-color:white"><span style="font-family:"Calibri Light",sans-serif"><span style="color:#212529">This is a retrospective single-center study including all patients with the diagnosis </span></span></span><span style="background-color:white"><span style="font-family:"Calibri Light",sans-serif"><span style="color:black">of wild-type ATTR-CM </span></span></span><span style="background-color:white"><span style="font-family:"Calibri Light",sans-serif"><span style="color:#212529">between January </span></span></span><span style="background-color:white"><span style="font-family:"Calibri Light",sans-serif"><span style="color:black">2014 and May 2021. </span></span></span><span style="background-color:white"><span style="font-family:"Calibri Light",sans-serif"><span style="color:#212529">A diagnosis of ATTR-CM was defined according to AHA criteria.</span></span></span> <span style="font-family:"Calibri Light",sans-serif"><span style="color:black">The primary endpoint was </span></span><span style="font-family:"Calibri Light",sans-serif">hospitalization due to heart failure (HF). Echocardiographic data were compared between patients reaching and not reaching the primary endpoint. </span><span style="font-family:"Calibri Light",sans-serif"><span style="color:#454545">GLS was obtained by 2D-speckle tracking echocardiography and RALS was calculated according to the formula: Average longitudinal strain in the apical LV segments / Sum of the average longitudinal strain in the basal and mid LV segments.</span></span></span></span></p> <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><strong><span style="background-color:white"><span style="font-family:"Calibri Light",sans-serif"><span style="color:#333333">Results:</span></span></span></strong> <span style="font-family:"Calibri Light",sans-serif"><span style="color:black">60 patients with </span></span><span style="font-family:"Calibri Light",sans-serif"><span style="color:#2e2e2e">ATTR-CM were included </span></span><span style="font-family:"Calibri Light",sans-serif"><span style="color:black">(mean age 86 ± 5 years, 68.3% males, 56,7 % atrial fibrillation, baseline LV ejection fraction (LVEF) 53%±14). </span></span><br /> <span style="font-family:"Calibri Light",sans-serif"><span style="color:black">Mean follow-up </span></span><span style="font-family:"Calibri Light",sans-serif">was 30 ± 23 months. The primary endpoint occurred in 30 patients (50%). The mean time to the first HF admission was 20 months.<br /> Patients reaching the primary endpoint had </span><span style="font-family:"Calibri Light",sans-serif">lower LVEF (47% </span><span style="font-family:"Calibri Light",sans-serif">± 13 vs 59% ±12, p<0.001), </span><span style="font-family:"Calibri Light",sans-serif"><span style="color:black">worse GLS (-9,2% </span></span><span style="font-family:"Calibri Light",sans-serif">±2,7 vs 13,9%± 3,4, p<0.001) and higher RALS (1,7 ± 0,7 vs 1,0 ± 0,1, p<0.001) and LVEF/GLS ratio (5.5 ± 1.5 vs 4.4 ± 1.2, p=0.035). </span><br /> <span style="font-family:"Calibri Light",sans-serif"><span style="color:black">Kaplan-Meier curves showed that HF hospitalization-free survival was lower in</span></span> <span style="font-family:"Calibri Light",sans-serif"><span style="color:black">patients with reduced LVEF </span></span><span style="font-family:"Calibri Light",sans-serif">(34±5 vs 66±7 months, p=0.006), GLS<-12% (28±4 vs 55±10 months, p= 0.040) and <span style="color:black">increased RALS (25±4 vs 66±9 months, p=0.003).<br /> In Cox regression analysis, reduced LVEF and increased RALS remained independent predictors of the primary endpoint (HR 2.5, 95% CI 1,1–6,0, p=0.045;<br /> HR 6,5 95% CI 1.8–24.1, p=0.005, respectively).</span></span></span></span></p> <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><strong><span style="font-family:"Calibri Light",sans-serif"><span style="color:black">Conclusions</span></span></strong><span style="font-family:"Calibri Light",sans-serif"><span style="color:black">: Reduced LVEF and increased RALS were independent predictors of the occurrence of hospitalization due to HF. </span></span><br /> <span style="background-color:white"><span style="font-family:"Calibri Light",sans-serif"><span style="color:#2a2a2a">This study </span></span></span><span style="background-color:white"><span style="font-family:"Calibri Light",sans-serif"><span style="color:black">highlights the prognostic importance of the apical sparing pattern and RALS as an indirect measure of amyloid myocardial infiltration.<u> </u></span></span></span></span></span><br /> </p> <p> </p> <p> </p>
Slides
Our mission: To reduce the burden of cardiovascular disease
Visit our site