Login
Search
Search
0 Dates
2024
2023
2022
2021
2020
2019
2018
0 Events
CPC 2018
CPC 2019
Curso de Atualização em Medicina Cardiovascular 2019
Reunião Anual Conjunta dos Grupos de Estudo de Cirurgia Cardíaca, Doenças Valvulares e Ecocardiografia da SPC
CPC 2020
CPC 2021
CPC 2022
CPC 2023
CPC 2024
0 Topics
A. Basics
B. Imaging
C. Arrhythmias and Device Therapy
D. Heart Failure
E. Coronary Artery Disease, Acute Coronary Syndromes, Acute Cardiac Care
F. Valvular, Myocardial, Pericardial, Pulmonary, Congenital Heart Disease
G. Aortic Disease, Peripheral Vascular Disease, Stroke
H. Interventional Cardiology and Cardiovascular Surgery
I. Hypertension
J. Preventive Cardiology
K. Cardiovascular Disease In Special Populations
L. Cardiovascular Pharmacology
M. Cardiovascular Nursing
N. E-Cardiology / Digital Health, Public Health, Health Economics, Research Methodology
O. Basic Science
P. Other
0 Themes
01. History of Cardiology
02. Clinical Skills
03. Imaging
04. Arrhythmias, General
05. Atrial Fibrillation
06. Supraventricular Tachycardia (non-AF)
07. Syncope and Bradycardia
08. Ventricular Arrhythmias and Sudden Cardiac Death (SCD)
09. Device Therapy
10. Chronic Heart Failure
11. Acute Heart Failure
12. Coronary Artery Disease (Chronic)
13. Acute Coronary Syndromes
14. Acute Cardiac Care
15. Valvular Heart Disease
16. Infective Endocarditis
17. Myocardial Disease
18. Pericardial Disease
19. Tumors of the Heart
20. Congenital Heart Disease and Pediatric Cardiology
21. Pulmonary Circulation, Pulmonary Embolism, Right Heart Failure
22. Aortic Disease
23. Peripheral Vascular and Cerebrovascular Disease
24. Stroke
25. Interventional Cardiology
26. Cardiovascular Surgery
27. Hypertension
28. Risk Factors and Prevention
29. Rehabilitation and Sports Cardiology
30. Cardiovascular Disease in Special Populations
31. Pharmacology and Pharmacotherapy
32. Cardiovascular Nursing
33. e-Cardiology / Digital Health
34. Public Health and Health Economics
35. Research Methodology
36. Basic Science
37. Miscellanea
0 Resources
Abstract
Slides
Vídeo
Report
CLEAR FILTERS
Electrical anatomy of the left atrium during atrial fibrillation
Session:
Posters - C. Arrhythmias and Device Therapy
Speaker:
Pedro Adragão
Congress:
CPC 2021
Topic:
C. Arrhythmias and Device Therapy
Theme:
05. Atrial Fibrillation
Subtheme:
05.4 Atrial Fibrillation - Treatment
Session Type:
Posters
FP Number:
---
Authors:
Pedro Adragão; Daniel Matos; Francisco Costa; Pedro Galvão Santos; Gustavo Rodrigues; João Carmo; Pedro Carmo; Diogo Cavaco; Francisco Morgado; Miguel Mendes
Abstract
<p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><strong><span style="font-size:10.5pt"><span style="font-family:"Arial",sans-serif">Introduction:</span></span></strong></span></span></p> <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:10.5pt"><span style="font-family:"Arial",sans-serif">Twenty years ago, pulmonary veins (PV) ostia were identified as the left atrium (LA) areas with the shortest refractory period during sinus rhythm. Pulmonary veins isolation (PVI) became standard of care, but clinical results are still suboptimal. Today, a special tool using the Carto® electroanatomical mapping (EAM) allows for AF cycle length mapping (CLM), to identify the areas in the left atria with shortest refractory period, during atrial fibrillation. Using this EAM tool, our study aimed to find the LA areas with the shortest refractory period to better recognize electrical targets for catheter ablation.</span></span></span></span></p> <p style="text-align:justify"> </p> <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><strong><span style="font-size:10.5pt"><span style="font-family:"Arial",sans-serif">Methods:</span></span></strong></span></span></p> <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:10.5pt"><span style="font-family:"Arial",sans-serif">Retrospective analysis of an unicentric registry of individuals with symptomatic drug-refractory AF who underwent PVI with Carto® EAM.</span></span> <span style="font-size:10.5pt"><span style="font-family:"Arial",sans-serif">CLM was performed with a high-density mapping Pentaray® catheter before and after PVI and in 4 redo procedures. We assessed areas of short cycle length (SCL) (defined as 120 to 250ms), and their relationships with complex fractionated atrial electrograms (CFAE), and low-voltage zones (from 0.1 to 0.3mV).</span></span></span></span></p> <p style="text-align:justify"> </p> <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><strong><span style="font-size:10.5pt"><span style="font-family:"Arial",sans-serif">Results:</span></span></strong></span></span></p> <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:10.5pt"><span style="font-family:"Arial",sans-serif">A total of 18 patients (8 men, median age 63 IQR 58-71 years) were included. Most patients presented with persistent AF (n=12, 67%), and 4 patients (22%) had a previous PVI. The mean shortest measured cycle length in AF was 140ms (SD ±27ms) TCL. All patients presented areas of SCL located in the PVs or their insertion, 70% in the posterior/roof region adjacent to the left superior pulmonary vein (LSPV) and 60% in the anterior region of the right superior pulmonary vein (RSPV). These two areas remained the fastest even after PVI. The anterior mitral region rarely presented SCL (17%). SCL were related to low-voltage areas in 94% and were adjacent to CFAE. Low-voltage areas and CFAE were more frequent and had a larger LA dispersion than SCL.</span></span></span></span></p> <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><strong><span style="font-size:10.5pt"><span style="font-family:"Arial",sans-serif">Conclusion: </span></span></strong></span></span></p> <p style="text-align:justify"><span style="font-size:11pt"><span style="font-family:Calibri,sans-serif"><span style="font-size:10.5pt"><span style="font-family:"Arial",sans-serif">We confirmed in 3D mapping that PVs are the LA zones with shortest refractory period, not only in sinus rhythm but also during AF. The persistence of SCL areas in the border zones of the PVI lines suggest the benefit of a more extensive CLM guided ablation. Larger studies are needed.</span></span></span></span></p>
Slides
Our mission: To reduce the burden of cardiovascular disease
Visit our site