Login
Search
Search
0 Dates
2025
2024
2023
2022
2021
2020
2019
2018
0 Events
CPC 2018
CPC 2019
Curso de Atualização em Medicina Cardiovascular 2019
Reunião Anual Conjunta dos Grupos de Estudo de Cirurgia Cardíaca, Doenças Valvulares e Ecocardiografia da SPC
CPC 2020
CPC 2021
CPC 2022
CPC 2023
CPC 2024
CPC 2025
0 Topics
A. Basics
B. Imaging
C. Arrhythmias and Device Therapy
D. Heart Failure
E. Coronary Artery Disease, Acute Coronary Syndromes, Acute Cardiac Care
F. Valvular, Myocardial, Pericardial, Pulmonary, Congenital Heart Disease
G. Aortic Disease, Peripheral Vascular Disease, Stroke
H. Interventional Cardiology and Cardiovascular Surgery
I. Hypertension
J. Preventive Cardiology
K. Cardiovascular Disease In Special Populations
L. Cardiovascular Pharmacology
M. Cardiovascular Nursing
N. E-Cardiology / Digital Health, Public Health, Health Economics, Research Methodology
O. Basic Science
P. Other
0 Themes
01. History of Cardiology
02. Clinical Skills
03. Imaging
04. Arrhythmias, General
05. Atrial Fibrillation
06. Supraventricular Tachycardia (non-AF)
07. Syncope and Bradycardia
08. Ventricular Arrhythmias and Sudden Cardiac Death (SCD)
09. Device Therapy
10. Chronic Heart Failure
11. Acute Heart Failure
12. Coronary Artery Disease (Chronic)
13. Acute Coronary Syndromes
14. Acute Cardiac Care
15. Valvular Heart Disease
16. Infective Endocarditis
17. Myocardial Disease
18. Pericardial Disease
19. Tumors of the Heart
20. Congenital Heart Disease and Pediatric Cardiology
21. Pulmonary Circulation, Pulmonary Embolism, Right Heart Failure
22. Aortic Disease
23. Peripheral Vascular and Cerebrovascular Disease
24. Stroke
25. Interventional Cardiology
26. Cardiovascular Surgery
27. Hypertension
28. Risk Factors and Prevention
29. Rehabilitation and Sports Cardiology
30. Cardiovascular Disease in Special Populations
31. Pharmacology and Pharmacotherapy
32. Cardiovascular Nursing
33. e-Cardiology / Digital Health
34. Public Health and Health Economics
35. Research Methodology
36. Basic Science
37. Miscellanea
0 Resources
Abstract
Slides
Vídeo
Report
CLEAR FILTERS
Global Longitudinal Strain and Strain Rate as markers of Subclinical Systolic Dysfunction in Patients with Moderate Aortic Stenosis
Session:
SESSÃO DE POSTERS 38 - ANÁLISE DE DEFORMAÇÃO MIOCÁRDICA
Speaker:
Inês Rodrigues
Congress:
CPC 2025
Topic:
F. Valvular, Myocardial, Pericardial, Pulmonary, Congenital Heart Disease
Theme:
15. Valvular Heart Disease
Subtheme:
15.1 Valvular Heart Disease – Pathophysiology and Mechanisms
Session Type:
Cartazes
FP Number:
---
Authors:
Inês Arrobas Rodrigues; Rafael Teixeira; António Santos; António Gonçalves; Leonor Moura; Marta Almeida; André Lobo; Inês Neves; Marta Leite; Fábio Nunes; Francisco Sampaio; Ricardo Fontes-Carvalho
Abstract
<p><span style="font-size:12pt"><span style="font-family:Aptos,sans-serif"><strong><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Background</span></span></strong></span></span></p> <p><span style="font-size:12pt"><span style="font-family:Aptos,sans-serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Aortic stenosis (AS) induces an adaptative ventricular remodelling leading to left ventricular (LV) hypertrophy </span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">as a compensatory response to increased afterload. While this adaptation temporarily perserves normal ejection fraction (EF), significant myocardial dysfunction may already be developing. Once LVEF begins to decline, it may not recover even after aortic valve replacement (AVR). Therefore, identifying alternative markers to detect </span></span><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">subclinical dysfunction before EF deterioration is crucial to improving patient outcomes. </span></span></span></span></p> <p><span style="font-size:12pt"><span style="font-family:Aptos,sans-serif"><strong><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Aim</span></span></strong></span></span></p> <p><span style="font-size:12pt"><span style="font-family:Aptos,sans-serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">To explore the role of baseline left ventricle global longitudinal strain (GLS) and strain rate (SR) as markers of subclinical LV dysfunction, predictors of LVEF decline, and their impact on survival of patients with moderate AS.</span></span></span></span></p> <p><span style="font-size:12pt"><span style="font-family:Aptos,sans-serif"><strong><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Methods</span></span></strong></span></span></p> <p><span style="font-size:12pt"><span style="font-family:Aptos,sans-serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Patients with moderate AS and LVEF ≥50% in at least 2 previous echocardiograms were retrospectively identified. Prosthetic and bicuspid valves were excluded. Baseline LV GLS and SR were used as covariates in cox regression models to predict the cumulative incidence of LVEF depression over 5 years and overall survival after multivariable adjustment including time-dependent AVR.</span></span></span></span></p> <p><span style="font-size:12pt"><span style="font-family:Aptos,sans-serif"><strong><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Results</span></span></strong></span></span></p> <p><span style="font-size:12pt"><span style="font-family:Aptos,sans-serif"><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">A total of 574 patients were included (age 76 ±9 years; 51% female; median follow-up time of 8,97 years). The average baseline aortic peak velocity was 3,4 ±0.8 m/s, mean pressure gradient was 25 ±9mmHg, aortic valve area was 1,1 ±0.3 cm<sup>2</sup>, and LVEF 60 ±5%. The mean GLS was -17 ±7% and the peak systolic SR was 1,2 ±0,5/s. Both baseline GLS (HR=0.88 for each -1%; 95% CI = 0,79-0,99; p=0,04) and SR (HR=0,89 for each +0.1/s; 95% CI = 0,80-0,99; p=0,03) were associated with a 5-year incidence of LVEF depression (<50%). Incorporating SR to GLS improved risk discrimination (increase in area under curve from 0,78 to 0,84; 95% CI = 0,01-0,10; p=0,04). Furthermore, a nonlinear relation was found between GLS (optimal boundary <-15,8%; p=0,35) and SR (optimal boundary >0,96/s; p=0,34) and overall survival. </span></span></span></span></p> <p><span style="font-size:12pt"><span style="font-family:Aptos,sans-serif"><strong><span style="font-size:11.0pt"><span style="font-family:"Calibri",sans-serif">Conclusions</span></span></strong></span></span></p> <p><span style="font-size:12pt"><span style="font-family:Aptos,sans-serif"><span style="font-size:11.0pt"><span style="background-color:white"><span style="font-family:"Calibri",sans-serif"><span style="color:black">This study establishes baseline GLS and SR as predictors of LVEF depression in moderate AS emphasizing their role in detecting subclinical LV dysfunction. The combined use of GLS and SR may enhance the prediction of LV function decline, supporting their potential utility in planning early interventions strategies. Although their direct relationship with survival needs further exploration, these findings highlight the importance of incorporating GLS and SR in AS management to enable timely AVR and improve patient outcomes.</span></span></span></span></span></span></p>
Slides
Our mission: To reduce the burden of cardiovascular disease
Visit our site