Login
Search
Search
0 Dates
2025
2024
2023
2022
2021
2020
2019
2018
0 Events
CPC 2018
CPC 2019
Curso de Atualização em Medicina Cardiovascular 2019
Reunião Anual Conjunta dos Grupos de Estudo de Cirurgia Cardíaca, Doenças Valvulares e Ecocardiografia da SPC
CPC 2020
CPC 2021
CPC 2022
CPC 2023
CPC 2024
CPC 2025
0 Topics
A. Basics
B. Imaging
C. Arrhythmias and Device Therapy
D. Heart Failure
E. Coronary Artery Disease, Acute Coronary Syndromes, Acute Cardiac Care
F. Valvular, Myocardial, Pericardial, Pulmonary, Congenital Heart Disease
G. Aortic Disease, Peripheral Vascular Disease, Stroke
H. Interventional Cardiology and Cardiovascular Surgery
I. Hypertension
J. Preventive Cardiology
K. Cardiovascular Disease In Special Populations
L. Cardiovascular Pharmacology
M. Cardiovascular Nursing
N. E-Cardiology / Digital Health, Public Health, Health Economics, Research Methodology
O. Basic Science
P. Other
0 Themes
01. History of Cardiology
02. Clinical Skills
03. Imaging
04. Arrhythmias, General
05. Atrial Fibrillation
06. Supraventricular Tachycardia (non-AF)
07. Syncope and Bradycardia
08. Ventricular Arrhythmias and Sudden Cardiac Death (SCD)
09. Device Therapy
10. Chronic Heart Failure
11. Acute Heart Failure
12. Coronary Artery Disease (Chronic)
13. Acute Coronary Syndromes
14. Acute Cardiac Care
15. Valvular Heart Disease
16. Infective Endocarditis
17. Myocardial Disease
18. Pericardial Disease
19. Tumors of the Heart
20. Congenital Heart Disease and Pediatric Cardiology
21. Pulmonary Circulation, Pulmonary Embolism, Right Heart Failure
22. Aortic Disease
23. Peripheral Vascular and Cerebrovascular Disease
24. Stroke
25. Interventional Cardiology
26. Cardiovascular Surgery
27. Hypertension
28. Risk Factors and Prevention
29. Rehabilitation and Sports Cardiology
30. Cardiovascular Disease in Special Populations
31. Pharmacology and Pharmacotherapy
32. Cardiovascular Nursing
33. e-Cardiology / Digital Health
34. Public Health and Health Economics
35. Research Methodology
36. Basic Science
37. Miscellanea
0 Resources
Abstract
Slides
Vídeo
Report
CLEAR FILTERS
PRELIMINARY RESULTS FROM THE EXTERNAL VALIDATION OF AN ARTIFICIAL INTELLIGENCE MODEL FOR OCCLUSION MYOCARDIAL INFARCTION DETECTION
Session:
SESSÃO DE COMUNICAÇÕES ORAIS 15 - INTELIGÊNCIA ARTIFICIAL EM CARDIOLOGIA: APROVEITAR O POTENCIAL!
Speaker:
Mafalda de Oliveira Griné
Congress:
CPC 2025
Topic:
E. Coronary Artery Disease, Acute Coronary Syndromes, Acute Cardiac Care
Theme:
13. Acute Coronary Syndromes
Subtheme:
13.3 Acute Coronary Syndromes – Diagnostic Methods
Session Type:
Comunicações Orais
FP Number:
---
Authors:
Mafalda Griné; Catarina Sena Silva; Henrique Sena Silva; Rita Bertão Ventura; Tomás Carlos; Bernardo Resende; Luísa Rocha; Manuel Oliveira-Santos; Miguel Nobre Menezes; Lino Gonçalves
Abstract
<p style="text-align:justify"><span style="font-size:medium"><span style="font-family:Aptos,sans-serif"><span style="color:#000000"><strong><span style="font-family:"Times New Roman",serif">Background:</span></strong><span style="font-family:"Times New Roman",serif"> Around 15 to 30% of patients presenting without significant ST-segment elevation have an acutely occluded coronary artery. These patients have a worse prognosis, likely related to delayed revascularization. We aimed to test a novel artificial intelligence (AI) model designed to enhance the detection of these cases based on admission 12-lead electrocardiograms (ECGs).</span></span></span></span></p> <p style="text-align:justify"> </p> <p style="text-align:justify"><span style="font-size:medium"><span style="font-family:Aptos,sans-serif"><span style="color:#000000"><strong><span style="font-family:"Times New Roman",serif">Methods:</span></strong><span style="font-family:"Times New Roman",serif"> A total of 658 ECGs from 398 patients admitted to the emergency department with suspected acute coronary syndrome (ACS) were retrospectively analyzed via the OMI AI ECG</span> <span style="background-color:white"><span style="font-family:"Times New Roman",serif"><span style="color:#222222">Model</span></span></span> <span style="font-family:"Times New Roman",serif">(Powerful Medical, Slovakia). The primary endpoint was the detection of occlusion myocardial infarction (OMI), defined as angiographic evidence of an acute culprit lesion with either 0-2 TIMI flow and positive troponin or TIMI 3 flow and significant troponin elevation (i.e. high-sensitivity troponin I ≥ 5000 ng/L). The model’s performance was compared with the current gold standard.</span></span></span></span></p> <p style="text-align:justify"> </p> <p style="text-align:justify"><span style="font-size:medium"><span style="font-family:Aptos,sans-serif"><span style="color:#000000"><strong><span style="font-family:"Times New Roman",serif">Results</span></strong><span style="font-family:"Times New Roman",serif">: In this initial test set, we identified 147 (36.9%) OMI cases. The OMI AI ECG</span> <span style="background-color:white"><span style="font-family:"Times New Roman",serif"><span style="color:#222222">Model</span></span></span> <span style="font-family:"Times New Roman",serif">achieved 72% accuracy (95% confidence interval (CI): 67.4–76.5), 44.2% sensitivity (95% CI: 37.2–51.6), 91.9% specificity (95% CI: 88.7-94.8), 79.6% PPV (95% CI: 71.9-86.6), NPV 69.8% (95% CI: 63.9-75.4), and a 0.422 Mathew’s correlation coefficient (MCC; 95% CI: 0.341-0.503), whereas the ST-segment elevation myocardial infarction (STEMI) criteria had 66.3% accuracy (95% CI: 61.0-71.3), 28.5% sensitivity (95% CI: 22.3-35.3), 93.2% specificity (95% CI: 90.1-96.1), 75.0% PPV (95% CI: 64.8-84.5), 64.6% NPV (95% CI: 58.6-70.4), and a 0.293 MCC (95% CI: 0.206-0.38)]. Demographic parameters, such as age and sex, did not impact model performance. Notably, within the patient group who underwent coronary angiography within 2 hours of admission, the model’s sensitivity increased to 81.2% (CI: 73.1-88.5), reflecting good model performance in acute/active case detection.</span></span></span></span></p> <p style="text-align:justify"> </p> <p style="text-align:justify"><span style="font-size:medium"><span style="font-family:Aptos,sans-serif"><span style="color:#000000"><strong><span style="font-family:"Times New Roman",serif">Conclusion:</span></strong><span style="font-family:"Times New Roman",serif"> In this challenging all-comer suspect ACS cohort, the OMI AI ECG</span> <span style="background-color:white"><span style="font-family:"Times New Roman",serif"><span style="color:#222222">Model</span></span></span> <span style="font-family:"Times New Roman",serif">outperformed the STEMI criteria in active OMI detection, with about 1.5 times higher sensitivity, without compromising specificity. This tool may contribute to better patient triage and timely revascularization.</span></span></span></span></p>
Slides
Our mission: To reduce the burden of cardiovascular disease
Visit our site